

Miscellaneous Exercise Question Bank

- A reversible isothermal evaporation of 90 g of water is carried out at 100°C. Heat of evaporation of water is 9.72 kcal/mol. Assuming water vapour to behave like an ideal gas, what is the change in internal energy of the system?
 - (A) 48.6 kcal
- **(B)** 52.33 kcal
- (C) 44.87 kcal
- **(D)** 56.06 kcal
- **2.** Heat of neutralization of oxalic acid is -53.35 kJ / mol using NaOH. Hence ΔH of

$$H_2C_2O_4 \rightleftharpoons C_2O_4^{2-} + 2H^+$$
 is:

- **(A)** 5.88 kJ
- **(B)** −5.88kJ
- (C) -13.7 kcal
- **(D)** 7.5 kJ
- *3. At 25°C and 1 atm which one (s) of the following has non zero ΔH_f° ?

- **(A)** Fe
- **(B)** O
- **(C)** Ne
- (**D**) C(diamond)

For Question No. 4 - 7

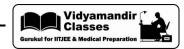
- (A) Statement-I is True, Statement-II is True and Statement-II is a correct explanation for Statement-I.
- **(B)** Statement-I is True, Statement-II is True and Statement-II is NOT a correct explanation for Statement-I.
- (C) Statement-I is True, Statement-II is False.
- (D) Statement-I is False, Statement-II is True.
- **4. Statement : I** ΔE is state function of the system.
 - **Statement: II** Because it depend upon the final and initial state of the system.
- **5. Statement : I** The enthalpy of neutralization of 1 equivalent of HF and 1 equivalent of NaOH is 14 kcal. mol, which is higher than HCl and NaOH.
 - **Statement : II** This is because the enthalpy of hydration of F^- is higher that of its heat enthalpy of dissociation.
- **6. Statement : I** The enthalpy of formation of $H_2O(\ell)$ is greater than that of $H_2O(g)$.
 - **Statement : II** Enthalpy change is negative for condensation reaction $H_2O(g) \longrightarrow H_2O(\ell)$
- 7. **Statement: I** Pressure, volume and temperature are extensive properties.
 - **Statement : II** Extensive property depends on the amount of substance.

- 8. The heat of neutralization of 0.1 mol HF with 0.1 mole NaOH is 5.91 kJ. If the enthalpy of ionization of HF is 2kJ mol⁻¹. What is the heat of hydration of F⁻ ions in kJ mol⁻¹?
- 9. $S(\text{rhombic}) + O_2 \longrightarrow SO_2$, $\Delta H = -297.5 \text{ kJ}$

This data indicates:

(A) Rhombic sulphur is yellow in colour

S(monoclinic) + $O_2 \longrightarrow SO_2$, $\Delta H = -300 \text{ kJ}$


- **(B)** monoclinic sulphur is more stable
- (C) monoclinic sulphur has metallic lustre
- **(D)** The process $S(\text{rhombic}) \rightarrow S(\text{monoclinic})$ is endothermic

10.

	that	ΔH° neutralisa	ation of a st	rong acid and	d strong ba	se is 140 kca	l/equiv?		$oldsymbol{f E}$	
	(A)	14 cal	(B)	35 cal	(C)	10 cal	(D)	7.5 cal		
l 1.	In the	e reaction CS ₂	$g(\ell) + 3O_2(g)$	\longrightarrow CO ₂ (g)	+ 2SO ₂ (g)	$\Delta H = -265 \text{ k}$	cal		\odot	
	The enthalpies of formation of ${\rm CO}_2$ and ${\rm SO}_2$ are both negative and are in the ratio $4:3$. The enthalpy of									
	forma	ation of ${\operatorname{CS}}_2$ is	s + 26 kcal/	mol. Calcula	te the enth	alpy of forma	tion of ${ m SO}_2$			
	(A)	– 90 kcal/n			(B)	– 52 kcal r				
	(C)	– 78 kcal/n	nol		(D)	– 71.7 kca	l/mol			
12.	For th	ne given reacti	ons						\odot	
		$SiO_2 + 4HF$	$F \longrightarrow SiF$	$_4 + 2H_2O$, ΔH	=- 10.17 k	cal				
				$Cl_4 + 2H_2O, \Delta$	H = 36.7 kg	cal				
	It may (A)	y be concluded HF will atta		d HCl will not	(B)	(B) HCl will attack SiO (D) None attack SiO ₂ t to the surroundings which K ⁻¹ . Find the value of x. sum of enthalpy of fusion and 08 K is -xJmol ⁻¹ (x being that temperature.	tack SiO₀ a	nd HF will not		
	(C)	HF and HC			(D)			iid iii wiii iiot		
13.	A hea	ted iron block	at 127°C	loses 300 J of	f heat to th	e surroundin	gs which ar	e at a temperat	ure of 27°.	
	Total	entropy chang	ge in this pr	cocess is 0.05	x JK ⁻¹ . F	ind the value	of x.		\odot	
14 .	Why i	is the enthalpy	y of sublima	ation equal to	the sum of	f enthalpy of	fusion and	enthalpy of vapo	orization ?	
15. The enthalpy change for a given reaction at 298 K is $-x J \text{mol}^{-1}$ (x being positive). If reaction								tion occurs		
	spontaneously at 298 K, the entropy change at that temperature.									
	(A) can be negative but numerically larger than x/298									
	(B)	_		ımerically sm	aller that x	:/298				
	(C) (D)	cannot be r	_							
16.	The h	eat of combus	stion of ethy	yl alcohol is -	-300 kcal. I	f the heats of	f formation	of CO ₂ (g) and	$H_2O(\ell)$ are	
	-94.3	and –68.5 kc	al respectiv	ely, calculate	the heat of	formation of	ethyl alcoh	ol.	\odot	
١7.	The s	tandard entha	alpy of deco	mposition of	the yellow	complex H ₃ N	${ m ISO}_2$ into ${ m I}$	NH_3 and SO_2 i	s +40 kJ	
	mol^{-1} . Calculate the standard enthalpy of formation of H_3NSO_2 . $\Delta \text{H}_f^0(\text{NH}_3) = -46.17 \text{ kJ mol}^{-1}$,									
	$\Delta H_{\rm f}^0({\rm SO}_2) = -296.83 {\rm kJ/mol.}$									
10		2		U Cl band fu	om the felle	owing data.			\odot	
18.		late the bond	-						_	
	•	- 2 -	0 -			J. Also the	bond entha	lpies of C–H,	S-CI, H-CI	
		s are 413, 326		_	•					
19.	Calcu	late ΔH_r° for 1	the reaction	CH ₂ Cl ₂ (g)—	\longrightarrow C(g) +	2H(g) + 2Cl(g)). The avera	ge bond enthal	pies of C–H	
	and C	C–Cl bonds are	e 414 kJ me	ol^{-1} and 330	$kJ \text{ mol}^{-1}$.				\odot	
NAFOR					22			Th a		

Calculate the enthalpy change when $50\ ml$ of $0.01\ M$ Ca(OH) $_2$ reacts with $25\ mL$ of $0.01\ M$ HCl. Given

20. Calculate the enthalpy change (ΔH) of the following reaction

 $2C_2H_2(g) + 5O_2(g) \longrightarrow 4CO_2(g) + 2H_2O(g)$ given average bond enthalpies of various bonds,

i.e., C-H, $C \equiv C$, O = O, C = O, O - H as 414, 814, 499, 724 and 640 kJ mol^{-1} respectively.

21. Calculate the standard enthalpy of solution of AgCl(s) in water

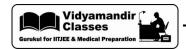
$$\begin{split} \Delta H_f^0(AgCl,s) &= -127.07 \text{ kJ mol}^{-1}, \ \Delta H_f^0, (Ag^+,aq) = 105.58 \text{ kJ mol}^{-1}, \\ \Delta H_f^0(Cl^-,aq) &= -167.35 \text{ kJ mol}^{-1}. \end{split}$$

- **22.** Enthalpies of solution of BaCl₂(s) and BaCl₂.2H₂O(s) are -20 kJ/mole and 8.0 kJ/mole respectively. Calculate heat of hydration of BaCl₂(s).
- 23. 10 mL of each 1M HCl and 1M H_2SO_4 are neutralized by 1M NaOH solution that liberate the heat of a kJ/equivalent and b kJ/equivalent respectively. What is relation between a and b.
- 24. 150 mL of 0.5 N HCl solution at 25°C was mixed with 150 mL of 0.5 N NaOH solution at same temperature. Calculate heat evolved in this reaction if final temperature was recorded to be 29°C. $(\rho_{H_2O} = 1 \, g \, / \, mL)$
- **25.** The enthalpy of neutralization of 1 M HCl by 1M NaOH is 57 kJ/mol. The enthalpy of formation of water is –285 kJ mole. The enthalpy of formation of OH⁻ ion is :
- **26.** In the reaction, $CO_2(g) + H_2(g) \rightarrow CO(g) + H_2O(g)$; $\Delta H = 2.8 \text{ kJ}$, ΔH represents
 - (A) Heat of reaction

(B) Heat of combustion

(C) Heat of formation

- **(D)** Heat of solution
- **27.** For the following reaction, C (diamond) $+O_2 \longrightarrow CO_2(g)$; $\Delta H = -94.3 \text{ kcal/mol}$


C (graphite) $+O_2 \longrightarrow CO_2(g)$; $\Delta H = -97.6 \text{ kcal/mol}$

(A) 1.59 kcal

(B) 0.1375 kcal

(C) 0.55 kcal

- **(D)** 0.275 kcal
- 28. The heat of combustion of sucrose $(C_{12}H_{22}O_{11})$ is 1350 kcal/mol. How much of heat will be liberated when 17.1 g of sucrose is burnt?
 - (A) 67.5 kcal
- **(B)** 13.5 kcal
- (C) 40.5 kcal
- **(D)** 25.5 kcal
- When a certain amount of ethylene was combusted, 5644 kJ heat was evolved. If heat of combustion of ethylene is 1411 kJ, the volume of O₂ (at NTP) that entered into the reaction is:
 - (A) 268.8 ml
- **(B)** 268.8 L
- (C) $6226 \times 22.4 \text{ L}$ (D)
 -) 22.4 L
- **30.** If enthalpy of dissociation of CH_4 and C_2H_6 are 320 and 600 calories respectively then bond energy of C–C bond is
 - (A) 80 cal
- **(B)** 40 cal
- (C) 60 cal
- **(D)** 120 cal

(A)

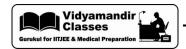
0.5 mol **(B)**

0.46 mol

31.	Heat o	f hydrogenation		=		_	Ience, resor	ance energy is	3:
	(A)	$x_1 - x_2$	(B)	$x_1 + x_2$	(C)	$3x_1 - x_2$	(D)	$x_1 - 3x_2$	
32 .	The b	ond dissociation	n energy	of gaseous	H_2 , Cl_2	and $\Delta H_f^{\Theta} HG$	Cl are 104	58 and -22	kcal mol ⁻¹
	•	tively. The bond		3					$lackbox{}$
	(A)	– 103.0 kcal	(B)	+ 103.0 kcal		22.0 kcal	(D)	44.0 kcal	
33.		nole of anhydro					25 cal/m	ol of heat. Δl	H _{hydration} of
	MgCl_2	$_2 = -30$ cal/mol.	Heat of	dissolution of	${ m MgCl}_2.{ m H}$	₂ O is:			
	(A)	+ 5 cal/mol	(B)	- 5 cal/mol	(C)	55 cal/mo	ol (D)	– 55 cal/m	ol
34.	Born-I	Haber cycle is us	sed to de	termine :					
	(A)	Lattice energy			(B)	Electron a	ffinity		
	(C)	Crystal energy	7		(D)	All of these	e		
35 .	For wl	hich one of the	followin	g reaction doe	es the me	olar enthalpy	change of	a reaction co	rresponds to
	Lattice	e energy of KBr ?							lacksquare
	(A)	KBr(s)——→K	X(s) + 1/2	3r ₂ (g)	(B)	KBr(g)—	\longrightarrow K(g) + B1	·(g)	
	(C)	KBr(s)——→F	K ⁺ (g) + Βι	(g)	(D)	KBr(g)—	\longrightarrow K ⁺ (g) + H	Br ⁻ (g)	
36.	The en	nthalpy of neutra	alization	of which of the	e followin	g acid & base	is nearly –	13.6 kcal.	lacksquare
	(A)	HCN and NaO			(B)	_	H and NH ₄ 0		
	(C)	HCl and KOH			(D)	HCl and M	NH ₄ OH		
37.	Equal	volume of HCO	OH and	NaOH are mix	ked. If x i	s the heat of	formation of	of water, then	heat evolved
	due to	neutralization i	s:						\odot
	(A)	More than x	(B)	Equal to x	(C)	Twice of x	(D)	Less than x	
38.	If CH ₃	$_{3}$ COOH + OH $^{-}$ \rightarrow	CH ₃ COC	$O^- + H_2O + q_1$					\odot
		$H^+ + OH^- \rightarrow H$	$H_2O + q_2$						
	then tl	he enthalpy cha	nge for tl	ne reaction CH	H ₃ COOH -	→ CH ₃ COO ⁻ -	+ H ⁺ is equa	al to :	
	(A)	$(\mathbf{q_1}+\mathbf{q_2})$	(B)	$(\mathbf{q_1} - \mathbf{q_2})$	(C)	$(\mathbf{q}_2 - \mathbf{q}_1)$	(D)	$-(\mathbf{q}_1+\mathbf{q}_2)$	
39.	Match	the Column							()
			lumn -1			C	olumn –II		$\neg \overline{}$
	(A)	C (s, graphite)	+O ₂ (g)-	\longrightarrow CO ₂ (g)	(p)	ΔH° combust	ion		
	(B)	C (s, graphite)	——→C	(g)	(p)	ΔH° _{formatio}	n		
	(C)	$CO(g) + \frac{1}{2}O_2(g)$	g)>C	O ₂ (g)	(r)	ΔH° atomizat	ion		
	(D)	$CH_4(g) \longrightarrow CH_4(g)$			(s)	ΔH° sublimat	tion		
40.	When	12.0 g of carbon	reacted	with limited a	mantity o	foxygen 57	5 kcal of be	at was produc	— ed Calculate
10.		mber of moles o		_		• •		_	Ed, Calculate
	110	01 1110103 0	pro	aacca (411(C)	-2, - 54	incui, Afi	_(00) - 21		

MEQB 34 Thermochemistry

 $0.64 \; \text{mol}$


(D)

 $0.74 \; mol$

(C)

41.	The average Xe–F bond energy is 34 kcal/mol, first I.E. of Xe is 279 kcal/mol, electron affinity of F is 85 kcal/mol and bond dissociation energy of F_2 is 38 kcal/mol. Then, the enthalpy change for the reaction									
	XeF ₄	\longrightarrow $Xe^+ + F^-$	+ F ₂ + F	will be :						\odot
	(A)	367 kcal/mol	e		(B)	425 kca	al/mole			
	(C)	292 kcal/mol	e		(D)	392 kca	al/mole			
42 .	Equal	volumes of mol	ar hydro	chloric acid a	nd sulphuri	c acid are	e neutralized b	y dil. NaOl	H solut	ion and x
	kcal a	nd y kcal of hea	t are libe	erated respect	tively. Which	of the fo	llowing is true'	?		\odot
	(A)	x = y	(B)	$x = \frac{1}{2}y$	(C)	x = 2y	(D)	None of	these	
43.	Given	Δ _{ioniz} H ^o (HCN) =	45.2 kJ	mol^{-1} and Δ	ioniz H ^o (CH ₃	₃ COOH) =	2.1 kJ/mol. V	Which one	of the	following
	facts i	s true?								\odot
	(A)	$pK_a(HCN) = p$	oK _a (CH ₃	COOH)	(B)	pK _a (Ho	$CN) > pK_a(CH_3)$	COOH)		
	(C)	$pK_a(HCN) < p$	oK _a (CH ₃	COOH)	(D)	pK _a (Ho	CN) = (45.17 / 2	2.07) pK _a (0	CH ₃ CO	OH)
44.	50.0 r	nL of 0.10 M I	HCl is m	ixed with 50	.0 mL of 0.1	10 M Na	OH. The solut	ion's temp	erature	rises by
	3.0°C	. Calculate the	enthalpy	of neutraliza	ation per mo	le of HCl	. (Assuming de	nsity of so	1. =	1 g/ml &
	specifi	c heat of water	= 4.18 J	g ⁻¹ k ⁻¹)						\odot
	(A)	$-2.5 \times 10^2 \text{ kJ}$	/mole		(B)	-1.3×1	.0 ² kJ/mole			
	(C)	$-8.4 \times 10^1 \text{ kJ}$	/mole		(D)	-6.3×1	.0 ¹ kJ/mole			
45 .	Entha	lpy of po	olymerisa	ation of	ethylene,	as	represented	by	the	reaction,
	nCH_2	= CH ₂ (-	-CH ₂ – C	H_2^{-}) _n is -100	OkJ per mole	of ethyl	ene. Given boi	nd enthalp	y of C	= C bond
	is 600	kJ mol ⁻¹ , enth	nalpy of (C – C bond (in	ı kJ mol) wil	l be:				
	(A)	116.7	(B)	350	(C)	700	(D)	indeterr	ninate	
46 .	The av	verage energy r	eauired t	to break a P –	· P bond in 1	P4 (s) into	gaseous aton	ns is 53.2	kcal m	ol^{-1} . The
		dissociation en								
	P – H 1	bond energy in	kcal mol	⁻¹ is [Neglect	presence of	Van der V	Waals forces in	P ₄ (s)]		()
	(A)	85.2	(B)	57.6	(C)	76.9	(D)	63.3		
47.		t of reaction for	the give	n acid-hase r	eaction: HA	+ NaOH -	→NaA + H ₂ O· Λ	H = -4 7 k	cal Th	ne heat of
47.			_		caction. Thi	i NaOII	- Avar + 11 ₂ 0, 2	11 – 4.7 K	car. II	(F)
		iation of HA is ₋								0
48.	The e	nthalpy of con	nbustion	at 25°C of	H ₂ (g), cycl	ohexane	and cyclohexe	ene are –	241,-3	920 and
	-3717 kJ mole ⁻¹ respectively. The heat of hydrogenation of cyclohexene is (Kcal/mole) approximate									
	intege	r:								

49. Calculate the resonance energy of isoprene (C5H8) from the data given.

$$\Delta H_{C-C} = 615 \text{ kJ mole}^{-1}$$
; $\Delta H_{C-C} = 348 \text{ kJ mole}^{-1}$;

$$\Delta H_{C-H} = 413 \text{ kJ mole}^{-1} \text{ ; } \Delta H_{H-H} = 435 \text{ kJ mol}^{-1}$$

The standard heat of sublimation of graphite is 718 kJmole⁻¹ and heat of formation of C₅H₈(g) is 79 kJmole⁻¹. (Give your answer in kcal mole⁻¹; approximate integer).

50. How many of the following have standard heat of formation equal to zero?

- (i) Br_{2(/)}
- (ii) $CO_{2(g)}$
- (iii) C_(graphite)
- (iv) Cl_{2(/)}
- (v) Cl_{2(g)}

- (vi) $F_{2(g)}$
- (vii) F_(g)
- (viii) l_{2(g)}
- (ix) S_(monoclinic)
- (x) $N_{2(g)}$

- (xi) P_(Black)
- (xii) P_(red)
- (xiii) CH₄
- Standard enthalpy of combustion of cyclopropane is -2091 kJ/mole at 25°C then calculate the enthalpy **51**. of formation of cyclopropane. If $\Delta H_f^0(CO_2) = -393.5 \text{ kJ} / \text{mole}$ and $\Delta H_f^0(H_2O) = -285.8 \text{ kJ/mole}$.
- **52**. Bond energies of N = N; H - H and N - H bonds are 945, 435, 391 kJ mol⁻¹ respectively, the enthalpy of igotarrowthe following reactions is: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
- **53**. The enthalpy of neutralization of a weak acid in 1 M solution with a strong base is -56.1 kJ mol⁻¹. If the enthalpy of ionization of the acid is 1.5 kJ mol⁻¹ and enthalpy of neutralization of the strong acid with a strong base is -57.3 kJ equiv⁻¹, what is the % ionization of the weak acid in molar solution (assume the acid to be monobasic)?
- For a reversible adiabatic ideal gas expansion $\frac{dP}{P}$ is equal to : **54**.
 - (A)
- (B) $-\gamma \frac{dV}{V}$ (C) $\left(\frac{\gamma}{\gamma 1}\right) \frac{dV}{V}$ (D) $\frac{dV}{V}$

- *55. Heat of reaction depend upon:
 - (A) Physical state of reactants and products
 - **(B)** Whether the reaction is carried out at constant pressure or at constant volume
 - (C) Method by which the final products are obtained from the reactants
 - **(D)** Temperature of the reaction
 - Select the correct statements:

- (A) All combustion reactions are exothermic
- (B) Heat of combustion is always negative
- $N_2 + O_2 \rightarrow 2NO$; $\Delta H = +ve$ (C)
- $F_2 + \frac{1}{2}O_2 \rightarrow F_2O$; $\Delta H = +ve$ **(D)**
- ***57**. Which of the following reaction cannot be use to define the heat of formation of $CO_2(g)$.

- $CO(g) + \frac{1}{2}O_2 \longrightarrow CO_2(g)$ (A)
- **(B)** $C_6H_6(\ell) + \frac{7}{2}O_2(g) \longrightarrow 6CO_2(g) + 3H_2O(\ell)$
- C (diamond) + $2O_2(g) \longrightarrow CO_2(g)$ (C)
- C (graphite) + $O_2(g) \longrightarrow CO_2(g)$ (D)

*56.

***58.** Heat of formation of CH₄ are:

If given heat:
$$C(s) + O_2(g) \longrightarrow CO_2(g)$$

$$\Delta H = -393.5 \text{ kJ}$$

$$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(\ell)$$

$$\Delta H = -285.8 \text{ kJ}$$

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(\ell)$$

$$\Delta H = -890.3 \text{ kJ}$$

*59. Heat of neutralization of the acid-base reaction is 57.32 kJ for:

(C)
$$HNO_3 + LiOH$$

*60. For which of the following reaction $\Delta H_{reaction}^0$ is not equal to ΔH_f^0 of product?

(A)
$$2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$$

(B)
$$N_2(g) + O_3(g) \longrightarrow N_2O_3(g)$$

(C)
$$CH_4(g) + 2Cl_2(g) \longrightarrow CH_2Cl_2(\ell) + 2HCl(g)$$

(D)
$$\operatorname{Xe}(g) + 2F_2(g) \longrightarrow \operatorname{Xe}F_4(g)$$

***61.** The following is(are) endothermic reaction(s):

 (\mathbf{I})

- (A) Combustion of methane
- **(B)** Decomposition of water
- **(C)** Dehydrogenation of ethane to ethylene
- Conversion of graphite to diamond

Paragraph for Question No. 62 - 64

Enthalpy of neutralization is defined as the enthalpy change when 1 mole of acid/base is completely neutralized by base/acid in dilute solution.

(D)

For strong acid and strong base neutralization net chemical change is

$$H^+(aq) + OH^-(aq) \longrightarrow H_2O(l);$$

$$\Delta_r H^o = -55.84 \text{ kJ/mol}$$

 $\Delta H_{ionization}^{0}$ of aqueous solution of strong acid and strong base is zero.

When a dilute solution of a weak acid or base is neutralized, the enthalpy of neutralization is some what less because of the absorption of heat in the ionization of the weak acid or base, for weak acid/base

$$\Delta H_{\text{neutralization}}^{0} = \Delta H_{\text{ionization}}^{0} + \Delta_{r} H^{0} \quad (H^{+} + OH^{-} \rightarrow H_{2}O)$$

- **62.** If enthalpy of neutralization of CH₃COOH by NaOH is 49.86 kJ/mol then enthalpy of ionization of CH₃COOH is:
 - (A) 5.98 kJ/mol

-55.84 kJ

- **(B)** -5.98 kJ/mol **(C)**
- **C)** 105.7 kJ/mol **(D)**
- (**D**) None of these
- **63.** What is ΔH^0 for complete neutralization of strong diacidic base A(OH)₂ by HNO₃?
 - **(B)** -111.68 kJ
- (**C**) 55.84 kJ/mol
 - 55.84 kJ/mol **(D)** None of these
- 64. Under the same condition how many mL of 0.1 M NaOH and 0.05 M H₂A (strong diprotic acid) solution should be mixed for a total volume of 100 mL produce the highest rise in temperature:
 - **(A)** 25:75

(A)

- **(B)** 50:50
- **(C)** 75:25
- **(D)** 66.66 : 33.33

Paragraph for Question No. 65 - 67

Use the data (all values in kJ per mole at 25°C) given below to answer the following;

$$\Delta_{\rm f} H_{\rm CH_3CN}^{\Theta} = +88$$

$$\Delta_{\rm f} H C_3 H_8 = -85$$

$$\Delta_{\text{sub}} H_{\text{C(graphite)}}^{\Theta} = 719$$

$$\Delta_{\rm diss} H_{\rm (N_2)}^{\Theta} = 948$$

$$\Delta_{\rm diss} H_{\rm (H_2)}^{\Theta} = 435$$

Bond enthalpies C - H = 414

$$C - N = 378$$

$$N - H = 426$$

- **65.** The bond enthalpy of C-C bond (kJ/mol) is :
 - **(A)** 250
- **(B)** 335
- **(C)** 223.3
- **(D)** 248.5

- **66.** The bond enthalpy of C = N bond (kJ/mol) is :
 - **(A)** 987.5
- **(B)** 811.5
- **(C)** 899.5
- **(D)** 890.0
- **67.** The enthalpy of hydrogenation of CH₃CN (kJ/mol) is :
 - **(A)** -288.5
- **(B)** +288.5
- **(C)** -89.5
- **(D)** +89.5

- **68.** Among them intensive property is:
 - (A) Mass
- (B) Volume
- **(C)** Surface tension
- **(D)** Enthalpy

- **69.** The relation between ΔU and ΔH is :
 - (A) $\Delta H = \Delta U P\Delta V$

(B) $\Delta H = \Delta U + P \Delta V$

(C) $\Delta U = \Delta V + \Delta H$

- **(D)** $\Delta \mathbf{U} = \Delta \mathbf{H} + \mathbf{P} \Delta \mathbf{V}$
- A coffee cup calorimeter initially contains 125 g water, at a temperature of 24.2° C. 8g of ammonium nitrate (NH₄NO₃), also at 24.2° C, is added to the water, and the final temperature is 18.2° C. What is the heat of solution of ammonium nitrate in kJ/mol? The specific heat capacity of the solution is 4.2 J/° C g.
 - **(A)** 33.51 kJ/mol

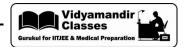
(B) 39.5 kJ/mol

 \odot

(C) 32.2 kJ/mol

- **(D)** 37.3 kJ/mol
- 71. When 1.0 g of oxalic acid $(H_2C_2O_4)$ is burned in a bomb calorimeter whose heat capacity is 8.75 kJ/K, the temperature increases by 0.312 K. The enthalpy of combustion of oxalic acid at 27°C is:
 - (A) -245.7 kJ/mol

(B) – 244.452 kJ/mol


(C) – 241.947 kJ/mol

- **(D)** None of these
- 72. When 1 mole of ice melt at $0^{\circ}C$ and at constant pressure of 1 atm. 1440 calories of heat are absorbed by the system. The molar volumes of ice and water are 0.0196 and 0.0180 litre respectively. Calculate ΔE for the reaction.
 - (A) $\Delta E = 720 J$

(B) $\Delta E = 1440 \text{ cal}$

(C) $\Delta E = 1.4 \text{ Kcal}$

(D) $\Delta E = 0$

73. The enthalpy of combustion of propane (C_3H_8) gas in terms of given data is :

Bond energy (kJ/mol)

Resonance energy of CO_2 is -z kJ/mol and $\Delta H_{vaporization} [H_2O(\ell)]$ is y kJ/mol.

(A)
$$8x_1 + 2x_5 + 5x_2 - 6x_3 - 8x_4 - 4y - 3z$$

(B)
$$6x_1 + x_5 + 5x_2 - 3x_3 - 4x_4 - 4y - 3z$$

(C)
$$8x_1 + 2x_5 + 5x_2 - 6x_3 - 8x_4 - y - z$$

(D)
$$8x_1 + x_5 + 5x_2 - 6x_3 - 8x_4 - 4y + 3z$$

74. If x_1, x_2 and x_3 are enthalpies of H-H, O=O and O-H bonds respectively, and x_4 is the enthalpy of vaporisation of water, estimate the standard enthalpy of combustion of hydrogen. (\mathbf{I})

(A)
$$x_1 + \frac{x_2}{2} - 2x_3 + x_4$$

(B)
$$x_1 + \frac{x_2}{2} - 2x_3 - x_4$$

(C)
$$x_1 + \frac{x_2}{2} - x_3 + x_4$$

(D)
$$2x_3 - x_1 - \frac{x_2}{2} - x_4$$

75. Setup of Born-Haber cycle; calculate lattice energy MgO(s). The given values are:

Enthalpy of formation of MgO(s) = -602

Sublimation of Mg(s) = 148

1st and 2nd I.E. of Mg = 738 and 1450

Bond dissociation energy of $O_2 = 498$

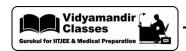
1st and 2nd Δ_{eg} H of O = -141 and 844 (all in kJ mole⁻¹)

76. ΔH_0^f of water is $-285.5~kJ~mol^{-1}$. If enthalpy of neutralization of monoacidic strong base is -57.3~kJ (\mathbf{b}) mol^{-1} , ΔH_f^0 of OH^- ion will be :

(A)
$$-228.5 \text{ kJ mol}^{-1}$$

(D)
$$-114.5 \text{ kJ mol}^{-1}$$

77. Find the enthalpy of S-S bond from the following data.


(i)
$$C_2H_5 - S - C_2H_5(g)$$

$$\Delta H_f^0 = -147.2 \text{ kJ/mol}$$

(ii)
$$C_2H_5 - S - S - C_2H_5(g)$$

$$\Delta H_{\rm f}^{\rm o} = -201.9 \text{ kJ/mol}$$

$$\Delta H_f^0 = 222.8 \text{ kJ/mol}$$

- calculate ΔG° (kJ/mol) at 127°C for a reaction with $\,K_{equilibrium}$ =10 5 : 78.
 - (A) -38.294
- **(B)** -16.628
- (C) -9.16
- (D) None of these
- **79**. Determine enthalpy of formation for $H_2O_2(\ell)$, using the listed enthalpies of reaction:

$$N_2H_4(\ell) + 2H_2O_2(\ell) \longrightarrow N_2(g) + 4H_2O(\ell);$$

$$\Delta_{\mathbf{r}}\mathbf{H}_{1}^{\circ} = -818\,\mathrm{kJ}\,/\,\mathrm{mol}$$

$$\mathrm{N_2H_4}(\ell) + \mathrm{O_2}(\mathrm{g}) \longrightarrow \mathrm{N_2}(\mathrm{g}) + 2\mathrm{H_2O}(\ell);$$

$$\Delta_{\rm r} {\rm H}_2^{\circ} = -622\,{\rm kJ}$$
 / mol

$$\mathrm{H}_2(\mathrm{g}) + \frac{1}{2}\mathrm{O}_2(\mathrm{g}) \longrightarrow \mathrm{H}_2\mathrm{O}(\ell);$$

$$\Delta_r H_3^{\circ} = -285 \,\mathrm{kJ}$$
 / mol

(A)
$$-383 \,\text{kJ} / \text{mol}$$

(C)
$$-498 \, \text{kJ} / \text{mol}$$

80. Calculate $\Delta_f G^{\circ}$ for (NH_4Cl, s) at 310K.

Given: $\Delta_f H^{\circ}(NH_4Cl, s) = -314.5 \text{ kJ} / \text{mol};$

$$\Delta_r C_p = 0$$

$$S_{N_2}^{\circ}(g) = 192 \, JK^{-1} \, mol^{-1};$$

$$S_{H_0}^{\circ}(g) = 130.5 \text{ JK}^{-1} \text{ mol}^{-1};$$

$$S_{\text{Cl}_{2}}^{\circ}(g) = 233 \, \text{JK}^{-1} \, \text{mol}^{-1};$$

$$S_{NH_4Cl}^{\circ}(g) = 99.5 \, JK^{-1} \, mol^{-1}$$

All given data are at 300 K.

(A)
$$-198.56 \,\mathrm{kJ} \,/\,\mathrm{mol}$$

(B)
$$-426.7 \,\mathrm{kJ} \,/\,\mathrm{mol}$$

(C)
$$-202.3 \,\text{kJ} / \text{mol}$$

From the following data, mark the option(s) where ΔH is correctly written for the given reaction. *81.

Given:
$$H^+(aq) + OH^-(aq) \longrightarrow H_2O(\ell)$$
; $\Delta H = -57.3 \text{ kJ}$

$$\Delta H_{solution}$$
 of HA(g) = -70.7 kJ/mol

$$\Delta H_{solution}$$
 of BOH(g) = 20 kJ/mol

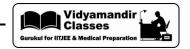
 $\Delta H_{\rm ionization}$ of HA = 15 kJ/mol and BOH is a strong base.

Reaction

$$\Delta H_r$$
 (kJ/mol)

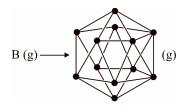
(A)
$$HA(aq) + BOH(aq) \longrightarrow BA(aq) + H_2O$$

$$-42.3$$


(B)
$$HA(g) + BOH(g) \longrightarrow BA(aq) + H_2O$$

(C)
$$HA(g) \longrightarrow H^{+}(aq) + A^{-}(aq)$$

$$-55.7$$


(D)
$$B^+(aq) + OH^-(aq) \longrightarrow BOH(aq)$$

82. The heat of combustion of acetylene is 312 kcal. If heat of formation of CO2 and H2O are -94 and -68 kcal respectively. Given that heat of atomisation of C and H are 150 & 50 kcal respectively and C - H bond energy is 93 kcal. Calculate $\frac{\Delta H_{C\equiv C}}{19}$. lacksquare

83. Boron exist in different allotropic forms. All allotropic form contains icosahedral units (icosahedral is a regular shape with 12 corners & 20 faces) with boron atoms at all 12 corners and all bonds are equivalent.

Calculate heat evolved at constant pressure (in kJ) per mole of boron atoms undergoing above change if ΔH_{BE} (B–B) = 200 kJ/mol. Report your answer after dividing by 100

84. The enthalpy change for the reaction of 5 litre of ethylene with 5 litre of H_2 gas at 1.5 atm pressure is

 $\Delta H = -0.5 \,\text{kJ}$. The value of ΔU will be : (1 atm Lt = 100 J)

- (A) 1.25 kJ
- **(B)** + 1.25 kJ
- (C) 0.25 kJ
- **(D)** − 0.25 kJ

85. If heat of dissociation of CHCl₂COOH is 0.7 kcal/mole then ΔH for the reaction :

 $\texttt{CHCl}_2\texttt{COOH} + \texttt{KOH} {\longrightarrow} \texttt{CHCl}_2\texttt{COOK} + \texttt{H}_2\texttt{O}$

- (A) 13 kcal
- **(B)** + 13 kcal
- (C) 14.4 kcal
- **(D)** 13.7 kcal

86. Match column-I to column-II standard entropy in kJ/K-molar at 25°C]

	Column-I	Column-II				
1.	$\Delta H_{\mathrm{C-C}}$	(p)	733.48			
2.	$\Delta H_{\mathrm{C-H}}$	(p)	97.81			
3.	$\Delta H_{C=C}$	(r)	434.3			
4.	$\Delta H_{C\equiv C}$	(s)	454.64			
5.	$\Delta H_{C\equiv O}$	(t)	804.22			

Using the data (all values are in kJ/mol at 25°C) given below:

 $\Delta H_{combustion}^{0}$ (ethane) = -1559.8

; $\Delta H_{combustion}^{o}$ (ethene) = -1410.9

 $\Delta H_{combustion}^{0}$ (acetylene) = - 1299.7

; $\Delta H_{combustion}^{o}$ (acetaldehyde) = - 1192.3

 $\Delta H_f^0 CO_2(g) = -393.5$

; $\Delta H_f^0 \text{ of } H_2O(\ell) = -285.8$

 ΔH^{0} for C(s) (graphite) \rightarrow C(g) = 716.68 ;

Bond energy of H-H = 435.94

Bond energy of O = O is 498.94

1 2 3 4 5 1 2 3 4 5 (A) q s r p t (B) r p t q s (C) q p s r t (D) p s q r t

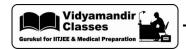
87. Heat of reaction for $C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(g)$ at constant pressure is -651 kcal at

17°C. Calculate the heat of reaction at constant volume at 17°C.

(A) -654.48 Kcal

(B) 654.48 Kcal

(C) 336 Kcal


(D) 290 Kcal

88. What amount of energy (kJ) is released in the combustion of 5.8 g of $C_4H_{10}(g)$?

 $2C_4H_{10}(g) + 13O_2(g) \longrightarrow 8CO_2(g) + 10H_2O(\ell) : \Delta H^{\circ} = -5756 \text{ kJ}$

- **(A)** 575.6
- **(B)** 287.8
- **(C)** 182
- **(D)** 57.56

89. From the given heat of reaction,

(i) $C(s) + O_2(g) \rightarrow CO_2(g)$

 $\Delta H = -97 \text{ kcal}$

 $CO_2(g) + C(s) \rightarrow 2CO(g)$ (ii)

 $\Delta H = 39 \text{ kcal}$

Find the heat of combustion of CO(g) is:

- (A) 68 kcal
- (B) - 68 kcal
- (C) +48 kcal
- (D) none of the above
- 90. What is the amount of heat to be supplied to prepare 128 g of CaC2 by heating CaCO3 followed by reduction with carbon? Reactions are:

 $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

 $\Delta H^{o} = 42.8 \text{ kcal}$

 $CaO(s) + 3C(s) \rightarrow CaC_2 + CO(g)$

 ΔH° = 111 kcal

(A) 102.6 kcal

221.78 kcal (B)

(C) 307.6 kcal

- **(D)** 453.46 kcal
- 91. Ionization energy of Al = 5137 kJ mole⁻¹; $\Delta H_{(hydration)}$ of Al³⁺ = -4665 kJ mole⁻¹ and $\Delta H_{hydration}$ for $Cl^- = -381$ kJ mole⁻¹. Which of the following statements is correct?
 - (A) AlCl₃ would remain covalent in aqueous solution
 - (B) Only at infinite dilution AlCl3 undergoes ionization
 - (C) In aqueous solution AlCl3 becomes ionic
 - (D) None of the above
- 92. 0.16 g of methane was subjected to combustion at 27°C in a bomb calorimeter. The temperature of calorimeter system (including water) was found to rise by 0.5°C. Calculate the heat of combustion of methane at (i) constant volume and (ii) constant pressure. The thermal capacity of the calorimeter system lacksquareis 17.7 kJ K⁻¹.
 - (A) -885, -889.95 kJ/mol

(B) -885, -921.9 kJ/mol

(C) -790, -2260 kJ/mol (D) -800, -900 kJ/mol

Calculate the resonance energy of C_6H_6 using Kekule formula for C_6H_6 from the following data. 93.

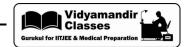
- ΔH_f^0 for $C_6 H_6(g) = -358.5 \text{ kJ} / \text{mol}$ (i)
- Bond energy C H, C C, C = C and H H are 490, 340, 620, 436.9 kJmol⁻¹ respectively (ii)
- $C_{(s)} \longrightarrow C_{(g)} \Delta H = 716.8 \text{ kJ/mol}$ (iii)
- -186 kJ mol-1 (A)

(B) -280 kJ mol-1

(C) -150 kJ mol⁻¹

- -289 kJ mol-1 (D)
- 94. In Haber's process of manufacturing of ammonia:

 $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g); H_{25^{\circ}C}^0 = -92.2 \text{ kJ}$


Molecule $N_2(g)$

 $H_2(g)$ $NH_3(g)$

 $C_{\rm p}JK^{\rm -}mol^{\rm -1}$ 29.1 28.8

If C_p is independent of temperature, then reaction at 100°C as compared to that of 25°C will be :

- More endothermic (A)
- Less endothermic (B)
- (C) More exothermic
- Less exothermic **(D)**

95. From the following data of ΔH , of the following reactions,

$$C(s) + \frac{1}{2}O_2(g) \longrightarrow CO(g)$$

$$\Delta H = -110 \text{ kJ}$$

$$C(s) + H_2O(g) \longrightarrow CO(g) + H_2(g)$$

$$\Delta H = 132 \text{ kJ}$$

What is the mole composition of the mixture of steam and oxygen on being passed over coke at 1273 K, to maintain constant temperature :

- **(A)** 0.5:1
- **(B)** 1:0.6
- **(C)** 0.8:1
- **(D)** 1:1
- **96.** The reaction of nitrogen with hydrogen to make ammonia has $\Delta H = -92 \text{ kJ}$.

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

What is the value of ΔU (in kJ) if the reaction is carried out at a constant pressure of 40 bar and the volume change is 1.25 litre.

- 97. An athlete is given 50g glucose of energy equivalent to 780 kJ. He utilizes 20% of this gained energy in an event. In order to avoid storage of energy in body. Calculate weight of water he needed to perspire. Enthalpy of H_2O for evaporation is $44 \, \text{kJ mole}^{-1}$.
 - **(A)** 127.5 g

(B) 63.81 g

(C) 255.27 g

- **(D)** Information is incomplete
- 98. The difference between heats of reaction at constant pressure and at constant volume for the reaction: $2C_6H_6(\ell) + 15O_2(g) \cdots + 12CO_2(g) + 6H_2O(\ell) \text{ at } 25^{\circ}\text{C in kJ is:}$
- One litre sample of a mixture of CH_4 and O_2 measured at 32°C and 760 torr, was allowed to react at constant pressure in a calorimeter. The complete combustion of CH_4 to CO_2 and water caused a temperature rise in calorimeter of 1 K. Calculate mole % of CH_4 in original mixture. [Given: Heat of combustion of CH_4 is -210.8 Kcal/mol. Total heat capacity of the calorimeter = 2108 cal/K]
- **100.** $2C + O_2(g) \rightarrow 2CO; \Delta H = -220 \text{ kJ}$

Which of the following statement is correct for this reaction?

- (A) Heat of combustion of carbon is 110 kJ
- **(B)** Reaction is exothermic
- **(C)** Reaction needs no initiation
- **(D)** All of these are correct